## Forward kinematics

Task:
Standing in the pose $(x, y, \theta)$ at time $t$, Determine the pose ( $x^{\prime}, y^{\prime}, \theta^{\prime}$ ) at time $\mathrm{t}+\delta \mathrm{t}$ given the control parameters $\left(v_{r}, v_{l}\right)$ !

Forward Kinematics for the Khepera Robot


## Thomas Hellström

Umeå University
Sweden


## One rolling wheel

- Motion along the local $Y$ axis is known as roll
- Everything else is known as slip
- Slip is assumed NOT to occur !
- 


## Angular velocity $\omega$

- Each wheel rotates around ICC along a circle with radius r
- The speed $v=2 \pi \mathrm{r} / \mathrm{T}$ where T is the time it would
take to complete one full turn around ICC
- The angular velocity $\boldsymbol{\omega}$ is $2 \pi / \mathrm{T}$ (rad/sec)
- $\boldsymbol{\omega}=2 \pi / \mathrm{T}=2 \pi \mathrm{r} / \mathrm{rT}=\mathrm{v} / \mathrm{r} \Rightarrow \boldsymbol{\omega} \mathrm{r}=\mathrm{v}$
- Same $\omega$ for both wheels



## Differential drive

- Pairs of wheels mounted on a common axis
- If the wheels are rotating on the ground: There is a point ICC !
- By varying ( $v_{r}, v_{l}$ ), ICC moves and different trajectories are chosen




## Forward kinematics

Rotate around ICC with angular velocity $\boldsymbol{\omega}$ for $\delta$ t seconds:
Position at time $\mathrm{t}+\delta \mathrm{t}$ :
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}\cos (\boldsymbol{\omega} \delta \mathrm{t}) & -\sin (\boldsymbol{\omega} \delta \mathrm{t}) \\ \sin (\boldsymbol{\omega} \delta \mathrm{t}) & \cos (\boldsymbol{\omega} \delta \mathrm{t})\end{array}\right]\left[\begin{array}{l}\mathrm{x}-\mathrm{ICC}_{x} \\ \mathrm{y}-\mathrm{ICC}_{y}\end{array}\right]+\left[\begin{array}{c}\mathrm{ICC}_{x} \\ \mathrm{ICC}_{y}\end{array}\right]$

Wheel encoders give decoder counts $\boldsymbol{n}_{r}$ and $\boldsymbol{n}_{l}$ from time=t to $\mathrm{t}+\delta \mathrm{t}$. In general: $n$ step $=\mathrm{v} \delta \mathrm{t} \Rightarrow \mathrm{v}=n$ step $/ \delta \mathrm{t}$ where step is the length ( mm ) of one decoder tick. Insert in 3) and 4):

```
R=l/2(\mp@subsup{v}{l}{}+\mp@subsup{v}{r}{})/(\mp@subsup{v}{r}{}-\mp@subsup{v}{l}{})=l/2(\mp@subsup{n}{l}{}+\mp@subsup{n}{r}{})/(\mp@subsup{n}{r}{}-\mp@subsup{\boldsymbol{n}}{l}{})
\omega\deltat}=(\mp@subsup{v}{r}{}-\mp@subsup{v}{l}{})\delta\textrm{t}/l=(\mp@subsup{n}{r}{}-\mp@subsup{\boldsymbol{n}}{l}{})\mathrm{ step /l
```


## Forward kinematics

Rotate around ICC with angular velocity $\boldsymbol{\omega}$ for $\delta$ t seconds:

$$
\theta^{\prime}=\omega \delta \mathrm{t}+\theta
$$

$$
\mathrm{ICC}=\left[\mathrm{ICC}_{x}, \mathrm{ICC}_{y}\right]=[x-R \sin \theta, y+R \cos \theta] .
$$



## Inverse kinematics

## Task:

Standing in the pose $(x, y, \theta)$ at time $t$, Determine control parameters ( $v_{r}, v_{l}$ ) such that the pose is ( $x^{\prime}, y^{\prime}, \theta^{\prime}$ ) at time $\mathrm{t}+\delta \mathrm{t}$ Often infinitely many solutions. Hard to find the optimal solution.

Often easy to find ONE solution by decomposing the problem and controlling only a few DOF at a time

## Forward kinematics summary

The robot is standing at ( $x, y, \theta$ ) and moves $\boldsymbol{n}_{l}, \boldsymbol{n}_{r}$ counts during one time step.
$R=l / 2\left(\boldsymbol{n}_{l}+\boldsymbol{n}_{r}\right) /\left(\boldsymbol{n}_{r}-\boldsymbol{n}_{l}\right)$
$\omega \delta \mathrm{t}=\left(\boldsymbol{n}_{\boldsymbol{r}}-\boldsymbol{n}_{\boldsymbol{l}}\right)$ step $/ l$
ICC $=\left[\right.$ ICC $_{x}$, ICC $\left._{y}\right]=[x-R \sin \theta, y+R \cos \theta]$.
New pose ( $x^{\prime}, y^{\prime}, \theta^{\prime}$ ) :
$\left.\begin{array}{l}x^{\prime} \\ y^{\prime} \\ \theta^{\prime}\end{array}\right)=\left(\begin{array}{ccc}\cos (\boldsymbol{\omega} \delta \mathrm{t}) & -\sin (\boldsymbol{\omega} \delta \mathrm{t}) & 0 \\ \sin (\boldsymbol{\omega} \delta \mathrm{t}) & \cos (\boldsymbol{\omega} \mathrm{t}) & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}\mathrm{x}-\mathrm{ICC}_{x} \\ \mathrm{y}-\mathrm{ICC}_{y} \\ \theta\end{array}\right]+\left(\begin{array}{c}\mathrm{ICC}_{x} \\ \mathrm{ICC}_{y} \\ \boldsymbol{\omega} \delta \mathrm{t}\end{array}\right)$
Note: independent of $\delta t$

## Inverse kinematics For the Khepera

1. Turn so that the wheels are parallel to the line between the original and final position of the robot origin:

$$
v_{r}=-v_{l}=v_{r o t}
$$

2. Drive straight until the robot's origin coincides with the destination:

$$
v_{r}=v_{l}=v_{\text {ahead }}
$$

3. Rotate in order to achieve the desired final orientation:

$$
v_{r}=-v_{l}=v_{r o t}
$$

## Inverse kinematics <br> For the Khepera

$v_{r}=v_{l} \Rightarrow$
$n_{r}=n_{l} \Rightarrow R=\infty, \omega \delta \mathrm{t}=0$
The robot will move in a straight line. I.e.: $\theta$ remains the same
$v_{r}=-v_{l} \Rightarrow$
$n_{r}=-n_{l} \Rightarrow R=0, \boldsymbol{\omega} \delta \mathrm{t}=2 \boldsymbol{n}_{l}$ step $/ l$
$\mathrm{ICC}=\left[\mathrm{ICC}_{x}, \mathrm{ICC}_{y}\right]=[x, y]$.
$x^{\prime}=x, y^{\prime}=y, \theta^{\prime}=\theta+\omega \delta \mathrm{t}$
The robot will rotate in place about ICC. I.e.: any $\theta$ is reachable. $(x, y)$ remains the same

## Holonomicity

By definition, a robot is holonomic if it can change all degrees of freedom (all parts of the pose) simultaneously and independently

The "Swedish wheel" can roll in two directions
Omniwhee/ is holonomic


## Nonholonomicity

A robot is non-holonomic if there are constraints in the way its pose can change

Most vehicles are Non-holonomic:


